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In this paper, we address the problem of task allocation in Mobile Crowdsensing (MCS) by means of 
forming tasks publisher coalition taking into consideration workers’ route preferences. In prior research 
works, only one of the MCS components (either task publishers, contributors or platform) dominates 
the task allocation process. Currently, other approaches have investigated tasks coalition based on their 
geographical locations. In this paper, we address the aforementioned problem by proposing a new scheme 
taking into accounts the interest of all the participating parties. To this end, our approach provides 
(1) strategies for selecting the best routes for workers with better long-term earnings and (2) task 
publishers’ coalition formation based on worker’s routes selection and preferences regardless of the order 
of individual execution of tasks. We proposed two models for the coalition formation: i) a centralized 
approach to solve the problem of the coalition formation together with the route selection, and ii) a 
simplified heuristic version that first determines disjoint tasks’ coalitions based on the preferred routes 
selected by workers, then, MCS platform sorts the coalitions with best quality of information and selects 
the best routes for each ordered coalition. Simulation results with real data-set show that the coalition 
of task publishers together with the distributed route selection per worker does guarantee the quality of 
information satisfaction of the sensing tasks while enhancing the worker payment.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Thanks to the large number of mobile users and their inher-
ent mobility, large-scale Mobile Crowdsensing (MCS) systems have 
emerged as an efficient solution for a wide range of applications 
by gathering contributions from individuals. In this type of ap-
plications, participants use their devices to collectively sense, ex-
tract and share information related to some phenomenon of in-
terest. Currently, MCS applications are employed in a variety of 
fields, ranging from environmental monitoring to social or indi-
vidual entertainment. Some MCS applications include traffic jam 
alerts, wireless indoor localization, and small cell network moni-
toring. Gigwalk1 is a crowd-sourcing application for checking the 
on-shelf availability of a product in a convenience store. Mobile 
device owners are “hired” to collect the data regarding the avail-
ability of a certain product in a store at a given precise time and 
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location [1]. By adopting crowd-sourcing, companies are reducing 
the inventory cost while maintaining the proper stock levels at dif-
ferent stores. Currently, several well-known brands and retailers 
are among the customers of Gigwalk.

Mobile Crowdsensing is defined as a new paradigm that em-
powers ordinary citizens to contribute data sensed or generated 
from their mobile devices, aggregates and fuses the data in the 
cloud for crowd intelligence extraction and human-centric service 
delivery [2]. Fig. 1 shows a typical architecture of mobile crowd-
sensing systems. Several sensing tasks can arrive from different 
task publishers and request information at specific time and lo-
cations. The platform plays the role of task manager. It has the 
responsibility of enabling cost-effective large-scale sensing appli-
cations by allocating the appropriate set of mobile users to each 
sensing task while maximizing the sensing revenue. A MCS sys-
tem relies on the crowd-sourced information, which means that 
a task may be answered by one or multiple workers depending 
of the application domain and the requirement of the task itself. 
Some existing platforms may require a single user to perform a 
task like in crowdsourcing delivery [3]. While in others, such as 
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Fig. 1. Mobile Crowdsensing components.

Google Maps, many users are required to answer a task to ensure 
the reliability of the information.

Task management can be classified, based on the task alloca-
tion mechanism as autonomous task selection or coordinated task 
assignment. In autonomous task selection mechanism, the workers 
select their tasks autonomously taking into account different ob-
jectives. However, this local selection of the tasks does not lead to 
a global optimal solution and tends to be inefficient with respect 
to global utility. Conversely, coordinated task allocation recruits 
qualified participants and allocates available sensing workers to 
tasks to meet the goals of various applications such as high task 
coverage, data quality, or low cost. Centralized approaches are usu-
ally efficient but time-consuming. In fact, the selection of workers 
becomes very complex when the number of tasks increases, es-
pecially under hard time constraints. In this paper, we focus on 
a mixed scheme between autonomous task selection and coordi-
nated task assignment approach.

On the other hand, location and time-sensitive based task al-
location faces several challenges such as location dependency, di-
versity of quality of the sensed data, and budget constraints. The 
Quality of Information (QoI) of the sensed data from mobile users 
is defined as a value that characterizes how well the sensed data 
from the worker satisfies the requirement of the task. In order 
to achieve an adequate level of quality, selecting workers with 
sufficient QoI is usually a requirement for MCS systems. Many ap-
proaches in the literature have tackled these problems by trying to 
achieve a trade-off between the traveled distances of the workers 
and the QoI of the sensed data in order to maximize the sensing 
revenue based on limited budget [4,5]. Others emphasized on the 
need of motivating users to participate as a key factor for the suc-
cess of MCS systems.

Few approaches have investigated the coalition formation 
among the tasks publishers. For instance, the work in [6] pro-
poses an approach that consist of forming coalition of tasks based 
on tasks’ locations using k-mediods algorithm, and assigning a 
group of workers to each task cluster such as the quality of service 
(QoS) of the task is maximized while the traveled distance is min-
imized. Forming coalitions among the task’s publishers can have 
several benefits, among them is the fact that a large budget can 
be distributed among the workers. This would benefit certain task 
publishers with reduced budget, whose tasks will obviously not 
be selected by the workers, which will enable the MCS platform 
to keep engaged both type of participants (i.e. task publishers and 
workers). In this paper, we propose a different approach which 
is based on the idea that active participants are able to select a 
group tasks that they are willing to perform in a specific order, i.e. 
a route, that allows them to minimize the traveled distance and to 
maximize the average payment per task, then, the MCS platform 
2

is responsible to form coalitions of tasks based on the preferred 
selected tasks of the workers maximizing the ratio between the 
aggregated QoI and the product of the budget and the response 
time.

In [7], a survey of several incentive mechanisms for participa-
tory sensing is presented. Recently, some mechanisms have been 
proposed to avoid the misreport of the workers’ cost minimizing 
the total cost while guaranteeing certain quality of experience to 
tasks publishers such as [8,9]. However, these approaches still suf-
fer from several limitations summarized as follows:

• Centralized approach tends to be time-consuming and very 
complex to find the optimal solution.

• Task allocation process is dominated by one MCS component 
(either task initiators or contributor).

• Workers can usually have full control on the allocated tasks to 
perform. Nevertheless, workers should have the possibility to 
determine the most effective routes to perform several tasks, 
a fact that may allow them to earn more in the long term run.

• Coalition of task publishers is based on the location of the 
sensing tasks which might not guarantee the workers satis-
faction regarding their payment.

Unlike our previous work [10], which is a single-task alloca-
tion model that enables workers to participate in consecutive tasks 
allocation as long as they can meet the time constraints, in this 
paper, we address the problem of multi-task multi-worker alloca-
tion by proposing a new pragmatic scheme for task management 
in MCS systems consisting of a global selection of the task publish-
ers’ coalition taking into account workers preferences strategies in 
terms of routes (i.e. set of tasks to be performed in a consecutive 
order).

Our motivation is the fact that a worker is more likely to be 
willing to perform nearby tasks than distant ones. For example, in 
a crowd sourcing system such as Uber, drivers will prefer to go to 
pick up customers close to their current locations instead of go-
ing to further locations (i.e. more expenses to reach the customer) 
when the traveled distance to the destination for both customers 
is the same, which means that the payment will be the same. In 
addition, it would also be profitable for the driver as well as the 
customer if the latter is willing to share the ride with other cus-
tomers (i.e. tasks publishers). Hence, workers will be more engaged 
to finish their allocated tasks.

Mobile workers should select a set of strategies to perform sev-
eral tasks as a route that the worker must follow to complete 
the tasks within the required response time. This means that the 
workers’ strategies are ordered list of routes that they are willing 
to perform to obtain a higher payment. Dijsktra shortest path al-
gorithm of the graph theory is used to select several routes for 
a given task. Two different approaches are proposed to form task 
publishers’ coalitions and their corresponding routes selection: i) 
a centralized approach by means of an exhaustive search of all 
possible combination of coalitions, and ii) a simplified heuristic 
version that first determines disjoint tasks’ coalitions based on the 
preferred workers’ routes, then, MCS platform sorts the coalitions 
with best quality of information and selects the best routes for 
each ordered coalition. For each coalition, a parameter-less scheme 
of Particle Swarm Optimization (PSO) algorithm is used to select 
the routes that maximize the aggregated QoI while minimizing the 
budget and response time.

The main contributions of our simplified model are:

• Maximizing workers’ payment by means of allocating several 
tasks to be performed consecutively taking into account the 
worker’s preferences without increasing the required budget 
per task.
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• Minimizing the budget used per task having sufficient aggre-
gated quality of information while satisfying their time con-
straints.

• Guaranteeing the workers’ payment by reducing the high run-
ning times required by centralized approach.

Simulation with real dataset shows that the simplified version 
of proposed approach outperforms the benchmark modes, namely 
the consecutive Tasks allocation using Particle Swarm Optimiza-
tion [10] and the coalition formation based on tasks’ location [6], 
in terms of workers’ payment. On the other hand, the proposed 
solution offers comparable results as our centralized task coalition 
formation model without increasing the required budget and re-
sponse time for the sensing tasks.

The remaining of the paper is organized as follows: Section 2
presents an overview of the relevant related work. Section 3 for-
mulates our problem and discuss the challenges of such a central-
ized formulation by means of an example. Section 3 presents the 
semi-distributed framework and its components which are based 
on the Short-Path algorithm, PSO-based task allocation algorithm. 
Section 4 describes the benchmark model used for comparison 
purposes and the most commonly used performance metrics for 
MCS systems. Section 5 presents the simulation scenarios and the 
numerical results obtained for the proposed model contrasted with 
the benchmark model. Finally, Section 6 concludes the paper.

2. Related work

Crowdsensing systems can be classified according to the phe-
nomenon measured and the user involvement in the sensing pro-
cess [11]. Regarding the first criterion, MCS systems can be en-
vironmental such as the approach in [12,13], infrastructure (e.g. 
RoadCrowd [14,15]), and social such as the recommendation to 
places visited by an individual [16,17]. According to the second 
criterion, MCS can be either participatory or opportunistic. In par-
ticipatory sensing, the users participate to send sensed data to a 
server [7]. In opportunistic sensing, the sensed information is sent 
automatically with minimal user involvement [18]. In both cases, 
proper incentives should be offered to the users to encourage their 
participation in the system (e.g. entertainment, service or financial 
rewards). In [19], a four-layered architecture for MCS systems is 
presented, which consists of application, data, communication, and 
sensing layer.

An analysis presented in [20] reveals some specific features in 
MCS in comparison with crowdsourcing. The unique characteristic 
lies in the aspects of mobility and sensing. Moreover, a classifica-
tion of task allocation algorithm is proposed, which depends on: 
1) the number of parameters to optimize: single-objective [21] or 
multi-objective [22,23], 2) the number of allocated tasks: single-
task-oriented [24] or multitask-oriented [25], and 3) how the pro-
cessing takes place: off-line [26] or online [27].

Prior research works aim at optimizing the process of data 
sensing by efficient assessment of the available resources (i.e. 
workers with smart devices) to meet the task requirements. Ow-
ing to the fact that several factors can be taken into consideration 
for the task allocation, the optimization process is hard to achieve. 
Some approaches aim at optimizing (i.e. maximizing or minimiz-
ing) only one of those factors such as sensing costs [28], coverage 
of area of interest [29,30], quality or credibility of sensed data 
[4,5], the number of completed tasks [31], and the revenue (i.e. 
difference between utility and cost) [32] under several constraints 
such as sensing duration, task capacity, budget and time. Neverthe-
less, the trade-off between the most commonly used factors needs 
to be investigated in order to meet the requirements of the sensing 
task.
3

In [33] a reverse auction is employed to design an incentive 
mechanism for mobile users aiming to maximize the participants’ 
expected profits. Luo et al. [34] introduced an all-pay auction to 
design an incentive mechanism so as to maximize the profit of 
platform. In [35], the authors adopted the auction approach to de-
sign an incentive mechanism for location-aware collaborative sens-
ing. A double auction mechanism is investigated in [36] to study 
the optimal assignment of mobile users and tasks (with data reuse) 
systematically, under both information symmetry and asymmetry, 
taking into account if the user cost and the task valuation are 
public information. In [8], an incentive mechanism for group re-
cruitment is proposed to solve the problem of workers’ greediness, 
where workers overprice their data to improve their profit. This 
approach consists of a selection and a payment mechanism taking 
into account both his contribution to the overall group QoI and the 
cost of his contribution compared with other workers. The main 
goal is to avoid the selection of greedy members since their costs 
will be high compared to the QoI they offer.

Few approaches have investigated the coalition formation be-
tween any type of participants. For instance, [37] presents a 
Bayesian co-clustering for truth discovery approach using a small 
portion of ground truth data to aggregate user-contributed obser-
vations. The groups have fixed size for both task publishers and 
workers based on a reliability matrix that it is learned from users’ 
correctness on the tasks. A group-based multi-task worker selec-
tion that allocates multiple tasks for a group of workers aiming 
at maximizing the tasks’ QoS while minimizing their completion 
time is presented in [6]. The approach consists of a location based 
clustering of tasks using k-mediods algorithm, and a genetic al-
gorithm to select a group of workers to a tasks’ cluster. However, 
it is a centralized approach for each task cluster, therefore, it will 
be time-consuming and might fail to deliver the sensed data for 
real-time sensing tasks. In [38], a truthful incentive mechanism is 
proposed to minimize the social cost such that cooperative tasks 
can be completed by a group of compatible users using real-life 
relationships from their social networks. Unlike these prior for-
mation coalition approaches, we propose to form coalition of task 
publishers based on the workers’ routes preferences.

3. System model

We consider a Mobile Crowdsensing system consisting of a set 
of mobile users (workers) W = {w1, w2, ....., w M}, and a set of 
sensing tasks T = {T1, T2, ...., T N }, where M is the number of mo-
bile users and N is the number of sensing tasks or task publishers. 
In MCS system, MCS platform publishes multiple sensing tasks. In 
this paper, it is assumed that each task publisher has only one 
task to be performed and that each mobile user has a smart de-
vice equipped with a set of sensors to carry out at least one task 
and uploads the required for the selected tasks to the platform. 
Each sensing task Ti is associated with a given budget Bi

max rep-
resenting the monetary incentive to encourage the participation of 
mobile users.

Our solution proposes to solve this problem in three basic 
stages as follows:

1) Preferred routes selection per worker: Once the sensing tasks 
are published by the MCS platform, each worker selects a num-
ber of preferred routes such as they provide the best payment 
per task for the worker while minimizing the traveled distance. 
We define a route as a set of tasks that are going to be carried 
out in a specific order.

2) Task Publishers’ Coalition: Once the preferred routes from all 
workers are received by the MCS platform, MCS platform is 
responsible of determining the configuration of coalitions for 
task publishers that maximizes the ratio between the aggre-
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Table 1
Model parameters.

Name Description

Coalition and Route Parameters

C number of coalitions

c coalition identification

Sh h-th possible configuration of tasks coalition

Tr set of tasks in a given route r
R set of preferred routes for all workers

Task Parameters

T Set of tasks

Bi
max Maximum budget per task i

qi Minimum QoI for task i
li Location of the task i
N number of tasks

Ni
max Maximum number of workers per task i

ti Maximum Response Time required by Task i
Worker Parameters

W Set of workers

M number of workers

ρ j reputation of the worker j

R j set of routes for worker j

φ j confidence of the worker j to perform a task

Nmax
j Maximum number of consecutive tasks per worker

qi,r
j QoI provided by the worker j to the task i in the route r

l j Location of worker j

p j Payment that the worker j is willing to receive per traveled km

di
j Distance between task i to worker j

di,r
j Traveled distance for worker j to reach task i in route r

rk
j k-th preferred ordered route for worker j

ti,r
j Time that takes worker j to reach and perform task i in route r

Output Variables

γ c
i Binary variable that associates task i with the coalition c

β
r,i
j Binary variable that indicates if route r is selected for worker j to 

perform task i
β

r,i
c, j Binary variable equal to γ c

i β
r,i
j

gated quality of information and the budget taking into account 
the workers’ routes preferences, the budget and the tasks’ time 
constraints. Each coalition represents a cluster of tasks. For con-
venience, we will use the terms ‘cluster’ and ‘coalition’ inter-
changeably.

3) Worker Selection for the possible coalition configuration: The 
proposed solution solves the coalition combination selection 
and workers’ route association using a meta-heuristic popula-
tion algorithm such as Particle Swarm optimization. PSO has 
been proven to obtain a satisfying optimal solution and to 
speed up the optimization process.

For the sake of clarity, Table 1 summarizes the notation used in 
this paper.

3.1. Preferred routes selection per worker

This is the first stage of the proposed model. Each worker de-
termines several routes, R j to perform a number of consecutive 
tasks, Tr , together with the expected total payment, traveled dis-
tance and average payment per task. A route is a set of tasks to be 
performed in a specific sequential order. Then, the worker selects a 
fixed number of preferred routes and sends them to the MCS plat-
form. These selected routes should maximize the average payment 
4

per task that the worker is willing to receive. For each worker, j, 
the objective function is given as follows

max
r∈R j

p j
∑

i∈Tr

di,r
j

|Tr | (1)

where Tr is the set of tasks that are included in route r and |Tr |
denotes its cardinality, i.e. number of tasks in the route r. This 
objective function is subject to the following constraint:

β
i,r
j ti,r

j ≤ ti; i ∈ N (2)

where ti,r
j is the time that takes worker j to reach task i, and 

it estimated the total traveled distance (i.e. 
i∑

h=1
dh,r

j ) to reach the 

task i in route r divided by the speed of the worker j. This is 
owing to the fact that the worker j will be performing some other 
tasks before task i, which is determined by the route r. It is worth 
noticing that if task i is the first task in the route the traveled 
distance, then, di,r

j is equal to the difference between the worker 
location and task location, otherwise, the traveled distance di,r

j is 
equal to difference between the last visited task and the task i.

Thus, k preferred routes are selected from each worker using 
this objective function, which means the first k routes that maxi-
mizes the objective function (i.e. r1

j � r2
j � r3

j � .. � rk
j ). To do so, 

we use the concept of the shortest path problem of the graph the-
ory to solve this problem, the algorithm finds a path between two 
vertices (or nodes) in a graph such that the sum of the weights 
of its constituent edges is minimized. For the routes selection per 
worker, the source of the graph is the location of the worker lo-
cation and the destination node is the task location. We consider 
that the worker initially selects a set of tasks in the vicinity. In 
this stage, each worker finds the routes using shortest path algo-
rithm [39] with a length of the route higher than 1. To do this, 
the algorithm first determines the weight matrices. The weights 
are either the distance between the worker and the task location 
or the distance between two tasks locations. This is owing to the 
fact that the workers can perform several consecutive tasks in or-
der to have more earning in the long term. Algorithm 1 presents 
the use of Dijsktra algorithm to determine the k-shortest path (i.e. 
route) to reach a task from a worker initial location.

Algorithm 1: Selection of k preferred routes.
Data: Worker Location l j ,

Tasks Location li ,
Destination Tasks location

Result: k shortest path routes for worker j
begin

Generate the matrix weight for the worker j, � j , i.e. the distances 
between worker and tasks;

[rk
j , d

i,r
j ] = Dijkstra(� j , source, destination);

Sort routes in descending order according to the average payment ∑
i∈Tr

p j d
i,r
j

|Tr | ;

Return the k first elements from rk
j ;

end

In addition to the preferred k routes obtained by this model, 
single-task routes are added to the list of preferred routes to avoid 
depriving the completion of certain tasks that are not suitable to 
be performed in sequence.

More concretely, let’s consider a simple MCS system with 
four available workers (W1, W2, W3, W4) and three location-based 
tasks (T1, T2, T3) in a two dimensional (2D) area as illustrated in 
Fig. 2a. This simplified example is only for illustrative purpose; real 
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Fig. 2. Scenario with three tasks and four mobile users.

Table 2
k shortest path for worker W1 to reach task T1.

Path Length Visited tasks Traveled distance

1 1 T1 1
2 2 T2 − T1 2
3 2 T3 − T1 2.73
4 3 T2 − T3 − T1 3
5 3 T3 − T2 − T1 3.73

scenarios are more complex and highly scalable involving consid-
erable number of tasks and workers. In the figure, it is shown a 
dashed gray circle with a radius equal to 0.5 Km around each task. 
Thus, it can be observed that the tasks are one 1 kilometer away 
from each other. Workers W1 and W2 are located at 1 km from 
task T1 while W3 is located at 1 km from T2 and W4 is located at 
1 km from T3. We use Fig. 2b to estimate the distances d2

1 and d3
1

using simple trigonometry. For instance, it is clear that the distance 
d1

1 is equal to 1 Km and distance between tasks T1 and T2 is also 
1 km. Owing to the fact that the triangle ̂W1 T1T2 has two sides 
that are equal and the inner angles are equal, d2

1 should be equal 
to 1 km. To estimate the distance d3

1, we need first to estimate 
the height h of the triangle ̂T1T2T3, i.e. h = √

1 − 0.52. Finally, d3
1

will be equal to the hypotenuse of the triangle ̂W1 O T3, this means 
d3

1 = √
1.52 + 0.52 = 1.73 Km.

Once all distances (i.e. di
j , i = 1,2,3, j = 1) are estimated, Algo-

rithm 1 returns the k preferred path between W1 and task T1 as 
shown in Table 2 for the illustrative example given in Fig. 2b.

From Table 2, it can be observed that there are only five paths 
to reach the task T1 for worker W1. For a realistic scenario, it is 
possible to have more than 5 paths if there are more nearby tasks. 
Each worker provides several possible routes to perform different 
tasks that comply with constraint (2) to the MCS platform. The 
maximum number k of routes per worker depends on the number 
of sensing tasks, the proximity of the workers to the tasks, and 
the required time of the tasks to be performed. If k is higher than 
one, then, the MCS platform have the direct route to a specific task 
5

Table 3
Set of routes for worker W1.

Route Payment Distance Payment per task Length

T3 − T2 4.10 2.7321 2.05 2
T3 − T1 4.10 2.7321 2.05 2
T1 − T2 3 2 1.5 2
T2 − T1 3 2 1.5 2
T2 − T3 3 2 1.5 2
T1 − T3 3 2 1.5 2

Table 4
Routes that worker W1 sends to MCS platform.

Route Payment Distance Payment per task Length

T3 − T2 4.10 2.7321 2.05 2
T3 − T1 4.10 2.7321 2.05 2
T3 2.60 1.7321 2.60 1
T2 1.5 1 1.5 1
T1 1.5 1 1.5 1

Table 5
Received routes at MCS platform.

Route Worker Tasks Payment Distance Payment 
per task

Length

1 w1 T3 − T2 4.10 2.73 2.05 2
2 w1 T3 − T1 4.10 2.73 2.05 2
3 w1 T3 2.60 1.73 2.60 1
4 w1 T2 1.50 1.00 1.50 1
5 w1 T1 1.50 1.00 1.50 1
6 w2 T2 − T1 7.51 2.73 3.76 2
7 w2 T2 − T3 7.51 2.73 3.76 2
8 w2 T2 4.76 1.73 4.76 1
9 w2 T1 2.75 1.00 2.75 1
10 w2 T3 2.75 1.00 2.75 1
11 w3 T3 − T2 3.00 3.00 2.00 2
12 w3 T3 − T1 3.00 3.00 2.00 2
13 w3 T3 2.00 2.00 1.00 1
14 w3 T1 1.73 1.73 1.00 1
15 w3 T2 1.00 1.00 1.00 1
16 w4 T2 − T1 7.50 3.00 3.76 2
17 w4 T2 − T3 7.50 3.00 3.76 2
18 w4 T2 5.00 2.00 4.76 1
19 w4 T1 4.33 1.73 2.75 1
20 w4 T3 2.50 1.00 2.75 1

and other options to reach the task passing by other tasks. In this 
example, we use a low value of k. It should be noticed that if k is 
too big, then, the mobile device will require more time to compute 
the routes selection and to send k routes to the platform.

Table 3 presents the preferred k routes for worker W1 to per-
form each task. Then, worker W1 selects a given number of routes 
to send back to the MCS platform but it will be also required to 
provide the single-task route as it is shown in Table 4. For this 
example, let’s consider that each worker selects 2 best routes plus 
the three individual routes for T1, T2 and T3, which are highlighted 
in the Table 3.

As the worker W1, the same procedure is carried out by the 
other workers. The other three workers also select 5 routes each 
and Table 5 presents the selected routes by each worker. At this 
stage, the MCS platform is responsible for determining the poten-
tial coalitions of tasks and their corresponding routes that maxi-
mize the ratio between the total aggregated quality of information 
and the budget.

3.2. Coalition of task publishers

This phase attempts to find coalitions between the task pub-
lishers in order to maximize their quality of information and the 
number of allocated tasks. The main goal is to maximize the ra-
tio between the aggregated quality of information and the product 
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of budget and the maximum response time taking into account 
the workers’ routes preferences subject to the budget and the 
tasks’ time constraints. Each worker has provided an ordered list 
of routes to perform several sets of consecutive tasks, β i,r

j . Thus, 
our objective is to maximize the following:

max
γ ,β

∑
i∈T

(∑
c∈C

∑
j∈W

∑
r∈R

β
i,r
c, jq

i,r
j − qi

)
(∑

c∈C

∑
i∈T

∑
j∈W

∑
r∈R

β
i,r
c, j p jd

i,r
j

)
× max

j,i,c,r
(β

r,i
c, jt

i
j)

(3)

where qi,r
j reflects the QoI with which the worker is likely to per-

form the task i in a route r. Similarly to our prior work in [10], we 
consider the quality of information of a worker in a route r ci,r

j re-
flect the accuracy and timeliness of the collected data and is given 
by

qi,r
j = ρ j × φh

j × δi
j (4)

ρ j is the reputation of worker j, h represents the position of the 
task i in the preferred route r of worker j, φh

j is the confidence of 
the worker to perform the task in the route h, and δi

j is given as

δi
j = 1 − max(0,min(logti (ti,r

j ),1)) (5)

ti,r
j is the time that takes worker j to reach the task i in the route 

r and ti is the maximum response time for task i. Our main focus 
is to evaluate the task publisher’s coalition based on the routes 
selection given by the workforce. It should be noticed that workers 
with low reputation are more likely to behave maliciously. In order 
to avoid this behavior, the current proposal can be modified to 
consider the preferred routes from workers with reputation higher 
than a given threshold when forming coalition of tasks.

Our objective function (3) is subject to the following con-
straints:

• Selection of one route per worker to perform a task∑
c∈C

∑
r∈R

β
i,r
c, j ≤ 1; ( j, i)i ∈ T , j ∈ W (6)

• Maximum number of workers per task∑
c∈C

∑
j∈W

∑
r∈R

β
i,r
c, j ≤ Ni

max; i ∈ T (7)

• Budget Constraint∑
c∈C

∑
j∈W

∑
r∈R

β
i,r
c, j p jd

i,r
j ≤ Bi; i ∈ T (8)

• Quality of information satisfaction∑
c∈C

∑
r∈R

∑
j∈W

β
i,r
c, jq

i,r
j ≥ qi; i ∈ T (9)

• Time constraint

max
i, j

β
i,r
c, jt

i
j ≤ ti; i ∈ T (10)

• One task belongs to only one coalition∑
γ c

i ≤ 1; i ∈ T (11)

c∈C

6

It should be noticed that β i,r
c, j is equal to γ c

i β
i,r
j , we used this 

notation to reduce the length of the equations.
As mentioned previously, each worker selects the routes that 

minimize the traveled distance while maximizing the total pay-
ment, the average payment per task and the number of tasks in 
the preferred route. Table 3 presents the routes that meet the re-
quirements for tasks ordered by the worker preferences. Then, the 
MCS Platform determines the coalitions that can be formed based 
on the workers’ preferred routes using the Algorithm 2.

Algorithm 2: Task coalition formation algorithm.
Data: Worker Routes R j
Result: Tasks Coalition Set C ,

Association tasks and coalition binary variable γ k
i

begin
for each route r ∈ R j do

Define the set of Tasks Tr for route r;
if Tr /∈ C then

Add the new coalition Ck = Tr ;
C ← C ∪ Ck ;

else
Find the Coalition Ck ∈ C that is equal to set Tr ;

end
Add r to the set of routes for Coalition Ck;

end
Return γ c

i , C ;
end

In a centralized approach, the MCS platform should find all pos-
sible coalition combinations among the set of coalitions. To do this, 
an exhaustive search Algorithm 3 determines all the coalition com-
binations and finds the one that maximizes the ratio among the 
aggregated quality of information and the product of budget and 
maximum response time. The complexity of an exhaustive search 
problem increases as the number of tasks increases because the 
number of possible coalitions configurations is exponentially in-
creased as the number of tasks increases.

Algorithm 3: Exhaustive search algorithm.
Data: Tasks Coalitions Set C
Result: Coalition combination with highest QoI S∗

h
begin

for each Ck ∈ C do
h ← 0;
Sh ← Ck ;

β
r,i
h, j ← β

r,i
k, j ;

for each Cl ∈ C do
if Cl ∩ Ck = then

Add the coalition Cl to feasible solution ;
Sh ← Sh = Sh ∪ Cl ;

end
h ← h + 1;

end
end
for each feasible solution Sh ∈ S do

Run Algorithm 4 for Sh ;
Evaluate Eq. (3) for Sh ;

end
Return S∗

h with highest evaluation of Eq. (3) and its association 
variables βr,i

h, j ;

end

Since the multi-task multi-worker allocation problem has been 
proven NP-hard in our prior work [10] or in [40], we propose to 
solve the formulated problem given in Eqs. (3) - (11) using PSO for 
each possible tasks’ coalition combination. This is owing to the fact 
that PSO has been proven to obtain a satisfying optimal solution 
and to speed up the optimization process in comparison to other 
evolutionary-based algorithms. PSO requires information exchange 
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among the population members to enhance the search process us-
ing a combination of deterministic and probabilistic rules.

3.3. Workers selection

Hence, the proposed solution solves the PSO-based coalition 
combination selection and workers’ route association. In the PSO 
algorithm, one vector (X) is used to represent the location of each 
particle n in the search space and one vector for the speed of 
particle movement, (vx). For our model, we map the both binary 
variables γ c

i and βr,i
j to the vector (X). Therefore, the dimension 

of the particle’s location vector (X) is equal to C × M + R × M × N . 
We use a parameter-less scheme [41] of PSO. This scheme defines 
penalties based on the average of the objective function and the 
level of violation of each constraint during each iteration. Thus, 
the penalty coefficients pl are determined by

pl = | f (x)| gl(x)∑P
j=1[g(x)]2

, (12)

where f (x) is the average objective function, g(x) is the average 
level of lth constraint violation over the current population and P 
is the number of constraints. The constraints (6) - (11) are included 
in 

∑P
l=1 kl ĝ(X) to penalize unfeasible solutions.

PSO is defined to solve a minimization problem, therefore, our 
fitness function is derived from (1) as follows:

f ′(x) =
⎧⎨⎩

G − ∑
c∈C

∑
j∈W

∑
i∈T

γ c
i X i,r

j qi,r
j , for feasible solutions

G − ∑
c∈C

∑
j∈W

∑
i∈T

γ c
i X i,r

j qi,r
j + ∑C

l=1 kl ĝ(X), otherwise
,

(13)

where G is a large number (e.g. 10000) in order to convert our 
maximization problem into a minimization problem and ĝ(xk

n) is 
determined as follows:

ĝ(xk
n) = max

(
0, [g j(xk

n)])
)

. (14)

The average of the fitness function for any population is approx-
imately equal to f (x) +| f (x)|. Algorithm 4 presents the PSO-based 
multi-task allocation algorithm.

Algorithm 4: PSO based joint coalition combination selec-
tion and route association algorithm.

Data: M S Worker Routes (r j ),
Maximum Budget, B j ,
Required Time, t j

max ,
QoI, qi , for all the tasks.

Result: coalition of tasks and selected routes (γ c
i , βr,i

j )

begin
Generate initial swarm with the particle positions and velocities as 

follows;
Xj ← randi(0,1);
vX ← randi(0,1);
Evaluate Fitness Function (13);
Determine first global best of the swarm;
while k ≤ MaxIteration do

Update Position;
Evaluate Fitness Function;
Determine best local for each particle;
Determine best global in the swarm and update the best global;
Update velocity;

end
end
7

Table 6
Potential coalitions for the example in Fig. 2.

Coalition Route Worker Tasks Budget Time Min QoI

1 6 w2 T1, T2 7.51 3.42 0.855
1 16 w4 T1, T2 7.50 4 0.81
2 2 w1 T1, T3 4.10 5.46 0.63
2 12 w3 T1, T3 3.00 5.71 0.675
3 7 w2 T2, T3 7.51 3.42 0.855
3 17 w4 T2, T3 7.50 4 0.81
3 1 w1 T2, T3 4.10 5.46 0.63
3 11 w3 T2, T3 3.00 8.57 0.675
4 9 w2 T1 2.75 1.25 0.95
4 5 w1 T1 1.50 2 0.7
4 19 w4 T1 4.33 2.31 0.9
4 14 w3 T1 1.73 4.95 0.75
5 4 w1 T2 1.50 2 0.7
5 8 w2 T2 4.76 2.17 0.95
5 18 w4 T2 5.00 2.67 0.9
5 15 w3 T2 1.00 2.86 0.75
6 10 w2 T3 2.75 1.25 0.95
6 20 w4 T3 2.50 1.33 0.9
6 13 w3 T3 2.00 2.85 0.75
6 3 w1 T3 2.60 3.46 0.7

3.4. Simplified task coalition based on preferred route selection of 
workers

We modified the centralized approach to a simplified version 
that first determines disjoint coalitions of tasks that can be per-
formed from the set of preferred routes given by the workers. In 
this approach, workers choose first the routes to perform several 
consecutive tasks and send this information to the MCS platform. 
MCS platform finds first all the possible tasks’ coalitions that can 
be formed based on workers’ route preferences using Algorithm 2. 
Each coalition contains the routes with a subset of tasks regardless 
the order of how these tasks will be carried out by the workers. 
For each coalition, the MCS platform determines the optimal so-
lution for route selection using the Algorithm 4. After the route 
selection per coalition, an exhaustive search algorithm combines 
the coalitions with different subset of tasks to determine all pos-
sible coalition combination, and it also determines the routes to 
be considered within each coalitions’ combination owing to the 
fact that one worker can just perform one route within a coali-
tion combination. This algorithm is similar to the one presented 
in Algorithm 3 without the line that runs the PSO algorithm be-
cause the route selection was already performed for each coalition. 
The coalition combination with the highest value of ratio between 
aggregated QoI and the product of the budget and maximum re-
sponse time given by Eq. (3) is used for workers selection by MCS 
platform. Finally, a fair allocation of the routes per coalition is 
used, which means that one route per coalition in the solution is 
allocated at a time subject to the budget of the involved tasks.

From the example given in Section 3, we demonstrated in the 
following how our modified algorithm works. Table 6 identifies all 
coalitions that can be formed based on the preferred routes sent 
by the workers.

Table 6 indicates that 6 coalitions can be identified based on 
the workers’ preferred routes. However, each solution should select 
only disjoint coalitions, which means that they don’t share tasks in 
common. Thus, Table 7 summarizes the possible solutions.

Table 7 shows all the possible routes. However, it should be no-
ticed that only one route per worker is selected for one coalition in 
each solution. Further analysis for each combination of coalitions 
is more complex and it is not included as illustrative example. Our 
approach takes into account all possible solutions and selects the 
one that provides the maximum ratio between the expected ag-
gregated QoI and the product of the average budget and maximum 
response time.
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Table 7
Coalition combinations.

Solution Coalition Tasks Routes

1 (1,6) (T1, T2), T3 [6,16]
[10,20,13,10]

2 (2,5) (T1, T3), T2 [2,12]
[4,8,18,15]

3 (3,4) (T2, T3), T1 [7,17,1,11]
[9,5,19,14]

3 (4,5,6) T1, T2, T3 [9,5,19,14]
[4,8,18,15]
[10,20,13,3]

In summary, the proposed solution selects the routes and the 
group of tasks that allows the MCS platform to maximize the total 
aggregated quality of information while minimizing the total bud-
get and response time based on the workers’ ability of establishing 
their preference to perform routes of consecutive tasks.

4. Benchmark model and performance metrics

Here, we briefly describe two benchmark models that we use 
for comparison purposes as well as the definition of the selected 
performance metrics to carry out this comparison.

4.1. Consecutive tasks allocation using PSO (PSO-MOA)

In our prior work [10], a service computing framework for task 
management in MCS system was proposed. This approach is cen-
tralized solution for the allocation of consecutive tasks to be per-
formed by the available workers in the MCS system taking into 
account the convenience of those workers based on their repu-
tation, proximity and their willingness to participate. This model 
provides a solution considering several components such as a 
multi-objective aware PSO based single task allocation algorithm, 
reputation evolution and delegation mechanisms.

PSO is used to solve the workers selection for each arriving 
task. Therefore, the approach is a single task allocation that maxi-
mizes the aggregated quality of information while minimizing the 
budget and the response time for a single task considering all 
workers willing to participate in the sensing task even those that 
are already performing another task. Moreover, PSO algorithm also 
determines the optimal payment for the workers which depends 
on the worker’s reputation.

Finally, our previous work has other two components, i.e. the 
mechanism to evaluate the worker’s reputation and the delegation 
mechanism, which are out of the scope of the current proposal.

To perform a fair comparison with our new proposal, the ob-
jective function is modified taking into account that the payment 
is determined by each worker and is given as follows:

max
X

( ∑
j∈W

qi
jβ

i
j

)
− qi

( ∑
j∈W

di
j p j

)
× max

j∈W
(ti

j)

(15)

where qi
j is the quality of information of worker j and qi is the 

minimum quality of information required by the task i. The nu-
merator in the objective function indicates the aggregated quality 
of information. The denominator in (15) corresponds to the prod-
uct of task budget and the response time to gather the information 
from the allocated workers to the task (i.e. the maximum time of 
the allocated workers to perform a task). The budget is estimated 
8

as the payment paid per traveled kilometer to the worker, P j , mul-
tiplied by the traveled distance per worker, di

j . The second term in 
the denominator is introduced to reduce the total required time to 
collect the sensed information. The Algorithm 5 describes how this 
approach works.

Algorithm 5: PSO-MOA worker selection algorithm.
Data: Worker Locations (l j ),

Worker Payment Demand (p j ),
Tasks Coordinates (li ),
Maximum Budget per Tasks Bi

max ,
Coverage radius di

Required Time ti

Result: Set of worker allocated to the tasks per worker (β i
j).

begin
Generate initial swarm with the particle positions Y i

j = (β i
j) and 

velocities randomly vi
j ;

Evaluate Fitness Function;
Determine first global best of the swarm;
while k ≤ MaxIteration do

Update Position;
Evaluate Fitness Function;
Determine best local for each particle;
Determine best global in the swarm and update the best global;
Update the inertia parameter w;
Update velocity ;

end
end

4.2. Tasks clustering based on geographical locations (Cluster-Geo)

The work in [6] presents a heuristic approach where task clus-
tering and workers grouping is proposed to reduce the complexity 
of a multi-task multi-worker allocation problem. In their work, the 
clustering of tasks is carried using their geographic locations re-
gardless the tasks distribution or number of tasks available while 
the workers selection for each task cluster is performed using Ge-
netic Algorithm aiming at maximizing the QoS and minimizing the 
traveled distance. To perform a fair comparison with our proposal, 
we take the idea of clustering tasks and for the worker selection 
within each cluster of tasks and use a PSO algorithm given in 5. 
This is owing to the fact that our objective function is different 
from their objective function. The algorithm for task clustering is 
shown in 6.

Algorithm 6: Location based task clustering algorithm.

Data: Tasks coordinates li ,
Tasks (qi , Bi

max, ti )
Result: Clusters of tasks C,

Tasks belonging to each cluster γ c
i ,

Workers Selection for each cluster β i
j

begin
eval ← Silhoutte Evaluation;
k ←eval.OptimalK;
[idxc , C] =kmedoids(li, k);
for i ← 1 to k do

T c ← Tasks belonging to the cluster C(i);
qC (i) ← max(qi(idxc == i));
BC (i) ← ∑

(Bi
max(idxc == i));

tC (i) ← max(ti(idxc == i)) ;
Evaluate Equation (15);

end
Sort clusters in descending order of its value of Equation (15);
for each cluster c ∈ C do

Run Algorithm 5;
end

end

The input of Algorithm 6 is the dataset of tasks, which in-
cludes the locations, li , the minimum QoI, qi , the maximum budget 
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allowed Bi
max and required response time ti . In [6], Silhouette eval-

uation criterion was adopted to evaluate the number of clusters 
needed based on the Euclidean distance of the tasks. Let k be the 
number of clusters needed, idxc be the index of the cluster c to 
which the task belongs to, and C is the set of clusters. K-mediods 
partitioning algorithm uses the number of clusters that achieves 
the highest separation score to cluster the tasks. Each cluster is 
represented by the included tasks, their locations, maximum QoI, 
qC (i), budget, BC (i) and maximum response time, tC (i).

For Cluster-Geo model, the setup of the cluster size plays an 
important role and can have negative effect on the PSO conver-
gence leading to a premature convergence. In our case, the models 
will determine the cluster size based on the preferred workers 
routes. This means that the only way that we can have a higher 
cluster size is to increase the required response time for the tasks 
such as the worker can select more tasks in one route to have 
more payment.

4.3. Performance metrics

� Task allocation rate: This metric represents the percentage of 
tasks being effectively allocated to workers.

φT = Tassigned

|T | (16)

where Tassigned is the number of tasks that are effectively allo-
cated and performed within their respective response time and 
it can be determined as:

Tassigned =
∑
c∈C

∑
i∈T

γ c
j (17)

� Average QoI Satisfaction per Task: This metric measures the av-
erage satisfaction of the quality of information over the set of 
tasks in a given instant.

S Q oI =

∑
c∈C

∑
i∈T

∑
r∈R

∑
j∈W

max
(

1, β
r,i
c, jq

i,r
j − qi

)
Tassigned

(18)

� Effective Crowd Size: This metric measures the number of par-
ticipating workers in the MCS system.

S I Z E =
∑
c∈C

∑
i∈T

∑
j∈W

∑
r∈R

β
r,i
c, j (19)

� Average Budget per Task: This metric measures the average bud-
get used per task and is given by

BT =

∑
c∈C

∑
r∈R

∑
i∈T

∑
j∈W

β
r,i
c, j p jd

i,r
j

Tassigned
(20)

� Average Response time per task: It indicates the average time to 
perform a location-based task.

tT =

∑
c∈C

∑
r∈R

∑
i∈T

∑
j∈W

β
r,i
c, jt

i
j

Tassigned
(21)

� Average Payment per Worker: It indicates the average payment 
received by the worker per traveled kilometer and it can be ex-
pressed as follows:

P W =

∑
c∈C

∑
r∈R

∑
i∈T

∑
j∈W

β
r,i
c, jd

i,r
j p j

(22)

S I Z E

9

Table 8
Simulation parameters.

Name Description Value

Ni
max Maximum number of workers per task i 5

Bi
max Maximum Budget per Task 50

Nmax
j Maximum number of task per worker j 5

p j Requested minimum payment per traveled km 
for worker j

1.25 - 3

qi Quality of information per task i 0.75 - 1
ρ j Worker Reputation 0.7 - 1
φ j Confidence of worker j 0.95 -1
s j Worker Speed 10 - 50 km/h

� Average Traveled Distance per Worker: It indicates the traveled 
distance by the worker and it is given as follows:

DW =

∑
c∈C

∑
r∈R

∑
i∈T

∑
j∈W

β
r,i
c, jd

i,r
j

S I Z E
(23)

� Average Payment per km: It indicates the traveled distance by 
the worker and it is given as follows:

Pkm =

∑
j∈W

∑
c∈C

∑
r∈R

∑
i∈T

β
r,i
c, j p jd

i,r
j∑

c∈C

∑
r∈R

∑
i∈T

β
r,i
c, jd

i,r
j

S I Z E
(24)

5. Simulation results

For our simulations, we used the Foursquare dataset2 as in [10]. 
Specifically, two files from this dataset are used: 1) the venues’ 
file that represents the task locations and 2) the users’ file that 
corresponds to the workers’ locations. From venues files, we select 
500 venues that are close to each other taking into account their 
location, then, we select workers from the users file that are within 
the location of the 500 selected venues. In particular, we extracted 
300 venues and 1412 users to represent the tasks and workers 
in our model. These subsets allow us to construct realistic spatial 
crowdsensing scenario.3

We run the simulations under two incremental scenarios:

• Incremental scenario of tasks: The number of tasks varies 
from 20 tasks up to 300 tasks with incremental steps of 40 
tasks keeping a fixed number of 1000 workers.

• Incremental scenario of workers: The number of workers 
varies from 200 workers up to 1000 workers with incremental 
steps of 200 workers having a fixed number of 100 tasks.

Table 8 summarize the setup used in our simulation, which is 
similar to the one used in our prior work in [10]. It is important 
to notice that where the table shows a range of values, this means 
that they are randomly generated between these two values.

5.1. Performance metrics for MCS platform

In this section, we present the performance metrics that the 
MCS platform should evaluate such as the value of the objective 
function of the proposed model given by Eq (1), task allocation 
rate, QoI satisfaction and the crowd size.

Fig. 3 shows the objective function values obtained for all mod-
els. It is worth noticing that the maximization problem is solved 
for each cluster in the case of Cluster-Geo model, this means that 

2 https://archive .org /details /201309 _foursquare _dataset _umn.
3 https://1drv.ms /u /s !AqOE4FreqsBrgaZUE6RXga _8ZKzi -w ?e =oRMDFC.

https://archive.org/details/201309_foursquare_dataset_umn
https://1drv.ms/u/s!AqOE4FreqsBrgaZUE6RXga_8ZKzi-w?e=oRMDFC
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Fig. 3. Aggregated QoI divided by the product of budget and the response time.

Fig. 4. Task allocation rate.

Fig. 5. QoI satisfaction.
objective function is maximized within each cluster for a reduced 
set of tasks. On the other hand, PSO-MOA model performs the 
selection of the workers maximizing the objective function for 
each task. To get an estimated value of our objective function for 
the benchmark models, we sum the aggregated QoI for all tasks 
and divided by the product of the total budget and maximum re-
sponse time. Doing this, it can be observed that Cluster-Geo model 
presents the best results for the objective function values while the 
centralized, coalition and PSO-model have similar results in both 
scenarios.

Fig. 4 presents the task allocation rate for the models. Fig. 4a 
indicates that as the number of tasks increases the models reduce 
their capability to allocate the tasks to the available workforce. 
In particular, Cluster-Geo model reduces the task allocation rate 
to 85% for the case of 300 tasks, while the other three models 
10
keep the allocation rate over 90%. From Fig. 4b, it can be observed 
that as the number of workers in the platform increases, the per-
formance of the models increases. In general, we can notice that 
Cluster-Geo model presents the worst behavior for both scenarios, 
which can be attributed to the way that this approach performs 
the tasks’ grouping based on locations without taking into account 
the proximity of workers to perform these tasks.

The average quality of information satisfaction per tasks given 
in (18) is presented in Fig. 5. Fig. 5a shows that the centralized 
model obtains QoI satisfaction values between 90% and 100% as 
well as the coalition and PSO-MOA models for the incremental 
scenario of tasks. However, Cluster-Geo model presents QoI sat-
isfaction values lower than 90% for more than 140 tasks. Fig. 5b 
presents the quality satisfaction for the incremental scenario of 
workers. It can be observed that Cluster-Geo model starts with a 
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Fig. 6. Crowd size percentage for incremental scenario of tasks.

Table 9
Task publisher metrics: incremental scenario of tasks.

No. Average QoI Average budget

Central Coal. Cluster-
Geo

PSO-
MOA

Central Coal. Cluster 
Geo

PSO-
MOA

20 8.60 5.11 4.61 2.14 28.37 15.44 9.13 4.02
60 6.97 3.39 2.85 2.11 27.05 13.84 5.66 5.54
100 6.31 3.27 3.49 2.06 28.02 13.43 7.76 5.80
140 6.00 3.45 3.17 2.21 27.65 13.94 7.26 6.80
180 6.01 3.81 3.51 2.08 27.80 15.18 8.41 6.72
220 5.76 4.02 2.85 2.08 27.71 15.70 6.84 7.38
260 5.61 3.83 2.69 2.05 27.16 14.94 6.69 7.56
300 5.40 3.98 2.80 2.08 27.44 17.23 7.11 8.01

67% of QoI satisfaction for 200 workers and reaches 97% for 1000 
workers. In the case of PSO-MOA model, QoI satisfaction increases 
from 70% to 97%. This means that PSO and Cluster-Geo model are 
severely affected if the workforce is reduced while the centralized 
and coalition models guarantee the QoI satisfaction over 90%.

Fig. 6 shows the percentage of the workforce that is involved 
in the execution of the sensing tasks. As expected, as the num-
ber of tasks increases, the number of workers required to perform 
more tasks increases for the four models. In the particular case of 
Cluster-Geo model, 30% more of the workforce is required to per-
form 300 tasks in comparison with the other three models.

Finally, it is important to remark that based on the workers’ 
route preferences the average coalition size for both models (i.e. 
centralized and coalition) varies from 1.5 to 2 with a standard devi-
ation of 0.7. In the case of Cluster-Geo model, the average coalition 
size varies from 2 to 2.11 with a standard deviation of 1, which de-
pends mostly on the geographical location of the tasks.

5.2. Task publisher’s metrics

Here, we evaluate the performance metrics from the perspec-
tive of a task publisher (i.e. average budget and average quality 
of information per task). Tables 9 and 10 summarizes the average 
quality of information and the average budget after running the 
algorithms the for the models considering both incremental sce-
narios. From the point of view of a task publisher, Tables 9 and 10
show the centralized model requires double amount of budget for 
a higher quality of information of the sensing task than the coali-
tion model.

Let’s analyze the highlighted line with 220 tasks in Table 9, it is 
shown that the centralized model achieves a QoI of 5.76 while the 
coalition model reaches only 4.02. However, the centralized model 
is using double amount of budget for just 40% extra of the QoI 
reached by the coalition model. On the other hand, Cluster-Geo 
and PSO-MOA models provide better results from the task pub-
lisher perspective by reducing the budget but these models also 
reduce aggregated quality of information. However, this QoI reduc-
11
Table 10
Task publisher metrics: incremental scenario of workers).

C.S. Average QoI Average budget

Central Coal. Cluster-
Geo

PSO-
MOA

Central Coal. Cluster 
Geo

PSO-
MOA

200 3.71 2.58 2.14 2.07 25.17 16.38 4.95 12.97
400 5.04 2.79 2.41 2.31 27.08 14.67 4.99 8.38
600 5.79 3.20 2.53 2.18 26.90 13.99 4.83 6.74
800 6.11 2.98 3.50 2.20 27.25 13.42 7.60 6.84
1000 6.31 3.27 3.49 2.13 28.02 13.43 7.76 5.41

Table 11
Worker metrics: incremental scenario of tasks.

No. Average distance (km) Average payment per km ($)

Central Coal. Cluster-
Geo

PSO-
MOA

Central Coal. Cluster 
Geo

PSO-
MOA

20 6.68 5.55 6.00 4.17 0.89 0.69 0.82 0.70
60 7.42 6.74 5.30 4.17 1.28 1.03 1.09 0.89
100 8.18 7.01 4.44 4.06 1.53 1.22 1.04 1.08
140 9.18 9.17 4.78 4.46 1.59 1.48 0.77 1.14
180 8.84 8.54 4.95 4.54 1.82 1.61 0.89 1.24
220 10.19 10.53 4.77 4.49 1.80 1.41 1.11 1.38
260 10.51 10.22 4.87 4.71 1.86 1.54 1.13 1.41
300 10.77 10.90 4.60 4.71 1.93 1.62 1.26 1.54

Table 12
Worker metrics: incremental scenario of workers.

C.S. Average distance (km) Average payment per km ($)

Central Coal. Cluster-
Geo

PSO-
MOA

Central Coal. Cluster 
Geo

PSO-
MOA

200 11.62 13.97 4.76 5.48 1.96 1.46 2.47 1.90
400 9.38 10.47 4.20 5.13 1.81 1.53 1.04 1.58
600 9.02 9.14 4.81 4.71 1.56 1.26 0.84 1.24
800 9.04 7.69 5.20 4.50 1.50 1.31 0.87 1.41
1000 8.18 7.01 4.44 4.27 1.53 1.22 1.04 1.13

tion could be detrimental if some workers are not able finish the 
allocated task.

From Table 10, it can be observed that as the number of work-
ers increases, the budget of the coalition and PSO-MOA models is 
reduced. This means that both models are selecting workers that 
allows them to reduce the average budget per task. In the par-
ticular case of the Cluster-Geo model, the budget is increased as 
the number of workers increases, which can be attributed to the 
fact that more workers will be in the proximity of the cluster to 
perform the tasks belonging to the cluster. For PSO-MOA model, 
the budget is highly reduced as the number of workers increases. 
This is owing to the fact that the workers’ selection is different as 
more workers are willing to perform the same task and these new 
workers are asking for less payment than the others while for the 
coalition formation models, neither the quality of information nor 
budget are highly affected by the increase of the crowd size.

5.3. Worker’s performance metrics

In this section, the performance metrics from the workers’ point 
of view (i.e. average traveled distance and average payment per 
worker) are presented in Tables 11 and 12 for the first scenario (i.e. 
incremental number of tasks) and second scenario (i.e. incremental 
number of workers) respectively.

From Table 11, one can observe that for the case with 140 tasks 
(highlighted line), coalition and centralized models present simi-
lar values of traveled distance and payment per kilometer while 
Cluster-Geo and PSO-model have around 50% of the average trav-
eled distance per worker and less payment per km. In general, it 
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Fig. 7. Average payment per worker in an incremental scenario of tasks.

can be noticed that the traveled distance and the average payment 
per worker increases as the number of sensing tasks increases. This 
is owing to the fact that there will be more sensing tasks that the 
workers will prefer to perform because of their proximity to these 
new tasks. In addition, it can be observed that the models forming 
coalition based on route preferences present promising benefits for 
the workers unlike the Cluster-Geo and PSO-MOA models. Finally, 
it seems that the centralized model would provide better payment 
for the worker in the long term, however, the main limitation of 
this model is the high running time, which is analyzed later in sec-
tion 5.4. High running time can deprive the workers to obtain their 
payment due to the fact the MCS platform will give the sensed in-
formation to the task publisher after the requested time.

Fig. 7 shows the average payment per worker for the four mod-
els in the incremental scenario of tasks. It can be observed that the 
centralized model can provide better average payment per worker 
followed by coalition model. It should be noted that the central-
ized model requires high execution time due to its complexity, 
implying a higher response time, which can deprive the workers 
of receiving the payment from the tasks’ publishers. Cluster-Geo 
model presents the lowest values of payment per worker, this can 
be attributed to the fact that cluster of task is based on the prox-
imity of tasks disregarding workers’ proximity. On the other hand, 
PSO-MOA model sorts the tasks in descending order of the objec-
tive function values, then, the worker selection is performed for 
one task at a time in such a way the first task to be allocated is 
the one that maximizes the objective function. Thus, the first tasks 
could select the best workers leaving a reduced workforce with 
lower QoI for the rest of the tasks.

From Table 12, it can be noticed that as the number of workers 
increases the traveled distance and payment is reduced, which is 
owing to the fact that more workers are willing to carry out the 
same number of sensing tasks and there are more available routes 
that can reduce the budget that a task publisher has to spend to 
have the sensed data.

5.4. Average response time and running time

We also analyze the impact of variation of the number of sens-
ing tasks on the response time taking into account that there is 
no need to pay to the workers that deliver the sensed data after 
the required time because this information will be useless. Fig. 8
shows the sum of the average response time and the running time 
of each model to determine the solution. In this figure, the dashed 
line represents the average required time per tasks. The response 
time depends on the order of the workers’ route preferences to 
perform a set of tasks.

For the centralized model, the running time depends on the 
complexity of the coalition formation and the selection of the 
coalition combination that provides the higher objective function 
using PSO algorithm for all coalition combinations. In the case of 
12
Fig. 8. Average response time plus running time for the incremental scenario of 
tasks.

the coalition and Cluster-Geo model, the running time corresponds 
to the complexity of the coalition formation plus the running time 
of PSO algorithm multiplied by the number of coalitions. PSO-MOA 
model does not perform any type of coalition formation, therefore, 
the running time depends on the convergence time of the PSO al-
gorithm for a single task allocation multiplied by the number of 
tasks.

It can be observed that the centralized and Cluster-Geo mod-
els will fail to pay the selected workers in the case of having more 
than 180 tasks (120 tasks for Cluster-Geo model) because the aver-
age response time plus the running time of the algorithm is higher 
than the average required response time of the set of tasks. This 
means that the workers will be discouraged to participate using 
any of these types of approach.

In summary, the coalition model can guarantee the payment to 
the workers because of the lower running time while satisfying the 
constraint of budget and response time with sufficient aggregated 
quality of information for task publishers. This enables the MCS 
platform to have always engaged both types of participants (i.e. 
task publishers and workers) to the MCS system.

6. Conclusion

In this paper, a task coalition framework for mobile crowdsens-
ing that takes into account the interest of all participating parties 
(i.e. task initiators, platform and contributors) is proposed. Unlike 
prior works, this framework is based on two main components: 
1) the strategies selection (e.g. best routes) for the workers, and 
2) the coalition formation based on the selection of set of tasks 
based on workers’ best routes that maximizes the ratio between 
the aggregated quality of information and the budget. We run ex-
tensive simulations using a real dataset for two scenarios: 1) a 
fixed number of workers varying number of tasks, and 2) a fixed 
number of tasks varying the number of workers. In the case of task 
incremental scenario with 1000 workers, it was shown that the 
coalition and centralized models allocate between 90% and 100% 
of the sensing tasks having values of QoI satisfaction between 90% 
and 100%. In the case of workers incremental scenario with 100 
tasks, centralized and coalition models allocates between 78% to 
100% of the tasks with QoI Satisfaction between 85% and 100%. 
Moreover, it was shown that the task coalition framework based 
on individual worker’s route selection can guarantee QoI satisfac-
tion of the sensing tasks while increasing the workers’ payment 
without having to increase the budget per task as the centralized 
model. Finally, owing to the fact that the proposed algorithm has 
lower running time than the centralized model, the MCS platform 
can guarantee the workers’ payment such as the platform can keep 
engaged both types of participants (i.e. task publishers and work-
ers).
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